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Abstract—The first enantioselective total synthesis of (—)-microbiotol and (+)-B-microbiotene, sesquiterpenes containing three
neighboring quaternary carbon atoms belonging to the cyclocuparane group, starting from cyclogeraniol employing a Sharpless—
Katsuki asymmetric epoxidation, a boron trifluoride etherate mediated epoxide rearrangement and an intramolecular diazo ketone

cyclopropanation as key steps, is described.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The cyclocuparane group is a small class of tricyclic
sesquiterpenes, containing a 4-methyl-1-(1,2,2-trimethyl-
cyclopentyl)bicyclo[3.1.0]hexane 1 carbon framework
comprising of three contiguous quaternary carbon atoms.
Even though the first two members of this class of sesqui-
terpenes, grimaldone 2 and microbiotol 3 were isolated in
1975 and 1981, their structures were only elucidated in
1988 and 1991, respectively.!-? Isolation of cyclocupar-
anol 4 was first reported in 1984 by Asakawa et al.? from
Marchantia polymorpha and Marchantia paleacea Bertol.
var diptera (Mont) Hatt., and was the first one to be estab-
lished to contain the cyclocuparane carbon framework.
Isolation of microbiotol 3 was first reported by Raldugin
et al. in 1981, from the ether extract of the needles of Mic-
robiota decussata, an evergreen bush, which grows on the
Sikhote—Alin mountain ridge, while the structure was
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established by Trachev et al.>in 1991 on the basis of spec-
tral data and molecular mechanics calculations in con-
junction with conformational analysis by NMR. The
absolute configuration of microbiotol 3 was established
via its chemical transformation to (R)-cuparene (+)-5. It
is worth noting that microbiotol 3, isolated from the plant
source is antipodal to cyclocuparanol 4 and grimaldone
2, isolated from the liverworts. In 1998, Konig et al.*
reported the isolation of three more cyclocuparane ses-
quiterpenes, o-microbiotene 6, B-microbiotene 7, and
isogrimaldone 8, in addition to grimaldone 2 from the
essential oil of Mannia fragrance. The presence of a
1,2,2-trimethylcyclopentyl  substituted bicyclo[3.1.0]-
hexane carbon framework containing three contiguous
quaternary carbon atoms made the cyclocuparanes
challenging synthetic targets.”> Herein, we report the first
enantioselective total synthesis of (—)-microbiotol 3 and
(+)-B-microbiotene 7.
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Hagemann's ester

2. Results and discussion

Recently, we have reported®® the synthesis of racemic
cyclocuparanes 3, 4, and 7 by employing the tricyclic ke-
tone 9a as the key precursor, which was obtained from
Hagemann’s ester via intramolecular cyclopropanation
of the diazo ketone derived from acid 10. Hence, a meth-
odology was conceived for the enantioselective genera-
tion of ester 11 starting from the readily available
cyclogeraniol 12.

The sequence is depicted in Scheme 1. Katsuki—-Sharp-
less asymmetric epoxidation of cyclogeraniol 12 using
(+)-diethyl tartrate following the reported procedure®
generated the (1S,6S)-epoxide (—)-13, [oc}zDS = -26.5 (c
1.1, CHCI;), with an enantiomeric excess of 95%. Oxid-
ation of the primary alcohol in 13 with phosphorus pent-
oxide—dimethyl sulfoxide and triethylamine’ furnished
the epoxyaldehyde 14, [« ]D = +48.3 (¢ 1.5, CHCly), in
48% yield. Horner— Wadsworth Emmons reaction with
triecthyl phosphonoacetate and sodium hydride trans-
formed aldehyde 14 into the epoxy propenoate 15 in
77% yield, whose structure was established from its spec-
tral data.!! For the ring contraction of the six-membered
ring in 15, a Lewis acid mediated rearrangement of
epoxide was adopted. Thus, treatment of epoxy ester
15 with boron trifluoride etherate in methylene chloride
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at —70 °C for 1 h cleanly furnished ketoester 16 in 90%
yield.!! The configuration of the stereogenic center in 16
was assigned as R in analogy to the rearrangement of
epoxides derived from PB-methylcarvone,® and finally
confirmed by its conversion to (—)-microbiotol 3. How-
ever, the enantiopurity of 16 has been slightly reduced
(87%)° in comparison to geraniol epoxide 13 as the reac-
tion is not stereospecific and the intermediacy of a car-
bonium ion in the rearrangement. Hydrogenation of
the olefin in ketoester 16 with 10% palladium over
carbon as the catalyst in ethanol furnished keto ester
17 in a quantitative yield.!! Since a conventional Wittig
reaction was not successful, ketoester 17 was converted
into pentenoate 11 employing the procedure developed
by Lombardo.'® Thus, reaction of ketoester 17 with
the reagent prepared from methylene bromide, zinc,
and titanium tetrachloride furnished pentenoate 11 in
60% yield.!! Pentenoate 11 was transformed into micro-
biotol and B-microbiotene by employing a previously
reported>® sequence. Thus, hydrolysis of ester 11 with
5% sodium hydroxide in 1:1 methanol-water furnished
acid 10, which was converted into diazo ketone 18 via
the corresponding acid chloride. Anhydrous copper sul-
fate—copper catalyzed intramolecular cyclopropanation
of diazo ketone 18 furnished a 1.7:1 mixture of norcyclo-
cuparanones 9a, [oc]25 = —-25 (¢ 0.4, CHCl;) and 9b,
[oc] = —11.4 (¢ 0.7, CHCI;), which were separated by

Scheme 1. Reagents, conditions, and yields: (a) Ref. 6; (b) DMSO, P,0s, 0 °C, 30 min; Et;N, 1 h; 48%; (c) (EtO),P(O)CH,COOEt, NaH, THF, 8 h,
77%; (d) BF3'Et,0, CH,Cl,, —70 °C, 1 h, 90%; (e) H; (1 atm), 10% Pd/C, EtOH, 12 h, 99%; (f) TiCly, CH,Br,, Zn, CH,Cl,, 0 °C, 1 h, 60%; (g) 5%
NaOH, H,0-MeOH (1:1), reflux, 12 h; (h) (COCL),, C¢Hs, rt, 2 h; CH,N,, Et,0, 0 °C, 2 h; (i) CuSOy, Cu, ¢-CgH,», reflux, W-lamp, 5 h, 75%, 11;
() MeMgl, Et,0, 0°C, 2 h, 75%; (k) PhsP"CH;I~, NaO’Am, C¢Hg, rt, 2 h, 75%.
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silica gel column chromatography. Structures of norke-
tones 9a and 9b were established by comparison of the
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spectral data with the racemic compounds.’® Wittig
methylenation of ketone 9a furnished B-microbiotene
7, [2] = +74 (¢ 0.4, CHCl5). On the other hand,
addition of methylmagnesium iodide transformed
tricyclic ketone 9a into (—)-microbiotol 3, [cx]]z)5 =-114
(c 0.8, CHCly), lit.? [oc]lz)5 = —13 (¢ 3.08, CHCI). In
a similar manner, addition of methylmagnesium iodide
to the tricyclic ketone 9b furnished epimicrobiotol 19,
[o]5 = =24 (¢ 0.5, CHCl3).

3. Conclusion

In conclusion, we have accomplished the first enantio-
selective total synthesis of microbiotol 3 and B-microbio-
tene 7, cyclocuparane sesquiterpenes containing three
contiguous quaternary carbon atoms, employing a Kat-
suki-Sharpless asymmetric epoxidation of cyclogeran-
iol, a Lewis acid catalyzed epoxide rearrangement and
an intramolecular cyclopropanation of a diazo ketone
as key steps.
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